705/BBA 22-23/53212

B.B.A. Semester-V (Honours) Examination, 2022-23

BACHELOR OF BUSINESS ADMINISTRATION

Course ID: 53212 Course Code: BBA/CC-12

Course Title: Operations Research

Time: 3 Hours Full Marks: 80

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP-A

1. Answer **all** the questions:

 $1 \times 10 = 10$

- i) Game theory models are classified by the
 - a) number of players
 - b) sum of all payoffs
 - c) number of strategies
 - d) all of these
 - e) None of these
- ii) A mixed strategy game can be solved by
 - a) algebraic method
 - b) matrix method
 - c) graphical method
 - d) all of these
 - e) None of these

- iii) Games which involve more than two players are called
 - a) conflicting games
 - b) negotiable games
 - c) N-person games
 - d) all of these
 - e) None of these
- iv) A competitive situation is known as
 - a) competition
-) marketing
- c) games
- d) all of these
- e) None of these
- v) The list of courses of action with each player____
 - a) is finite
- o) is infinite
- c) two only
- d) three only
- e) None of these
- vi) In a transportation problem with 4 supply points and 5 demand points, how many number of constraints are required in its formulation?
 - a) 20

b) 1

c) 0

- d) 9
- e) None of these

- vii) The problem of maximizing $Z=x_1-x_2$, subject to constraints $x_1 + x_2 \le 10$, $x_1 \ge 10$, $x_2 \ge 0$ and $x_2 \le 5$ has
 - a) no solution
 - b) one solution
 - c) two solutions
 - d) more than two solutions
 - e) None of these
- viii) The value of (x_1, x_2) for an optimal solution for

Minimize $Z=6x_1-8x_2$

subject to $5x_1 + 10x_2 \le 30$,

$$4x_1 + 4x_2 \le 20$$
,

$$x_1 \ge 0, x_2 \ge 0$$
 is

- a) (0,0)
- b) (1,6)
- (0,3)
- d) (3,7)
- e) None of these
- ix) In PERT Chart, the activity time distribution is
 - a) Normal
- b) Binomial
- c) Poisson
- d) Beta
- e) None of these

- x) Critical activities have
 - a) Maximum float b) Minimum float
 - c) Zero float
-) Negative float
- e) None of these

GROUP-B

2. Answer any **ten** questions:

 $2 \times 10 = 20$

- a) Define Saddle point.
- b) Define Assignment problem.
- c) Define Critical path.
- d) Define Standard form of a L.P.P.
- e) Define Mixed Strategy.
- f) Define Zero Sum game.
- g) Define Forward and Backward pass.
- h) Define Decision Making Environments.
- i) Solve by Graphical Method:

Maximize
$$Z = x_1 + 3x_2$$

subject to
$$3x_1 + 6x_2 \le 8$$
,
 $5x_1 + 2x_2 \le 10$,
 $x_1, x_2 \ge 0$

j) Define OR models.

- k) Show that the 2×2 game $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is, non-strictly determined, if a
b, a<c, d
b and d<c
- Show that whatever may be the the value of a the game with the following payoff matrix is strictly determinable:

3	7
-3	a

- m) Define optimal solution.
- n) Define basic feasible solution
- o) Solve Row Minima Method:

1	2	1	4	30
3	3	2	1	50
4	2	5	9	20
20	40	30	10	aij

GROUP-C

3. Answer any **four** from the following questions:

$$5 \times 4 = 20$$

- a) Define Fundamental Theorem of L.P.P
- b) Define Payoff matrix and Games with Saddle point.

- Solve the following L.P.P Graphically: Minimize $Z = 3x_1 + x_2$ subject to $2x_1 + 3x_2 \le 6$ $x_1 + x_2 \ge 1$ $x_1, x_2 \ge 0$
- d) Find the optimal assignment for a problem with the following cost:

•	M ₁	M ₂	M ₃	M ₄	M ₅
J ₁	8	4	2	6	1
J ₂	0	9	5	5	4
J ₃	3	8	9	2	6
J ₄	4	3	1	0	3
J ₅	9	5	8	9	5

e) Solve the following L.P.P (Simplex Method): Maximize $Z = 60x_1 + 50x_2$

subject to
$$x_1 + 2x_2 \le 40$$

 $3x_1 + 2x_2 \le 60$
 $x_1, x_2 \ge 0$

f) Solve by North-West Corner rule:

19	20	50	10	7
70	30	40	60	9
40	8	70	20	18
5	8	7	14	\mathbf{a}_{ij}

GROUP-D

4. Answer any **three** from the following questions:

$$10 \times 3 = 30$$

- i) a) Define Unbounded Solution.
 - b) Solve the following L.P.P:

Maximize
$$Z = x_1 + x_2 + 3x_3$$

Subject to
$$3x_1 + 2x_2 + x_3 \le 3$$

 $2x_1 + x_2 + 2x_3 \le 2$
 $x_1, x_2, x_3 \ge 0$

$$2+8=10$$

- ii) a) Define Saddle Point.
 - b) For what value of a, the game with the following payoff matrix is strictly determinable?

	1	. 11	III
1	a	5	2
11	-1	а	-8
III	-2	3	а

- iii) a) Full form of PERT and CPM.
 - b) Solve the following L.P.P graphically:

Maximize
$$Z = 9x + 8y$$

subject to
$$4x + 3y \le 30$$

 $2x + 3y \le 18$
 $x, y \ge 0$

$$2+8=10$$

- iv) a) Show that the set $X = \{(x_1, x_2): x_1^2 + x_2^2 = 16\}$ is not a convex set.
 - b) Put the following problem in a standard form:

$$Minimize Z = 3x_1 - 4x_2 - x_3$$

subject to
$$x_1 + 3x_2 - 4x_3 \le 12$$

 $2x_1 - x_2 + x_3 \le 20$
 $x_1 - 4x_2 - 5x_3 \ge 5$,

 $x_1 \ge 0$, x_2 and x_3 are unrestricted in sign.

$$2+8=10$$

- v) a) Define Assignment Problems.
 - b) Find the optimal assignment for a problem with the following cost:

***************************************	J ₁	J ₂	J ₃
P ₁	12	24	15
P ₂	23	18	24
P ₃	30	14	28

$$2+8=10$$

- vi) a) Define Transportation Problems.
 - b) Solve the following transportation problem:

	D ₁	D ₂	D ₃	a _i
O ₁	5	1	8	12
O ₂	2	4	0	14
O ₃	3	6	7	4
bj	9	10	11	

$$2+8=10$$
